首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment
Authors:Shi-rong Li  Hou-de Su  Chang-jun Cheng
Institution:1. Department of Engineering Mechanics, Lanzhou University of Technology, Lanzhou 730050, P. R. China
2. Department of Mechanics, Shanghai University, Shanghai 200444, P. R. China
Abstract:Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro-mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate,and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbucklod configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.
Keywords:functionally graded material  laminated beams with piezoelectric layers  thermal buckling  free vibration  natural frequency
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号