Polynomially scaling spin dynamics simulation algorithm based on adaptive state-space restriction |
| |
Authors: | Kuprov Ilya Wagner-Rundell Nicola Hore P J |
| |
Affiliation: | Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford, UK. ilya.kuprov@chem.ox.ac.uk |
| |
Abstract: | We report progress with an old problem in magnetic resonance -- that of the exponential scaling of simulation complexity with the number of spins. It is demonstrated below that a polynomially scaling algorithm can be obtained (and accurate simulations performed for over 200 coupled spins) if the dimension of the Liouville state space is reduced by excluding unimportant and unpopulated spin states. We found the class of such states to be surprisingly wide. It actually appears that a majority of states in large spin systems are not essential in magnetic resonance simulations and can safely be dropped from the state space. In restricted state spaces the spin dynamics simulations scale polynomially. In cases of favourable interaction topologies (sparse graphs, e.g. in protein NMR) the asymptotic scaling is linear, opening the way to direct fitting of molecular structures to experimental spectra. |
| |
Keywords: | NMR EPR Spin Simulation Polynomial scaling |
本文献已被 ScienceDirect PubMed 等数据库收录! |