首页 | 本学科首页   官方微博 | 高级检索  
     


A new dynamic subgrid-scale model using artificial neural network for compressible flow
Affiliation:1. LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China;3. State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology, Xuzhou 221116, China
Abstract:The subgrid-scale (SGS) kinetic energy has been used to predict the SGS stress in compressible flow and it was resolved through the SGS kinetic energy transport equation in past studies. In this paper, a new SGS eddy-viscosity model is proposed using artificial neural network to obtain the SGS kinetic energy precisely, instead of using the SGS kinetic energy equation. Using the infinite series expansion and reserving the first term of the expanded term, we obtain an approximated SGS kinetic energy, which has a high correlation with the real SGS kinetic energy. Then, the coefficient of the modelled SGS kinetic energy is resolved by the artificial neural network and the modelled SGS kinetic energy is more accurate through this method compared to the SGS kinetic energy obtained from the SGS kinetic energy equation. The coefficients of the SGS stress and SGS heat flux terms are determined by the dynamic procedure. The new model is tested in the compressible turbulent channel flow. From the a posterior tests, we know that the new model can precisely predict the mean velocity, the Reynolds stress, the mean temperature and turbulence intensities, etc.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号