首页 | 本学科首页   官方微博 | 高级检索  
     


Density functional study on highly energetic organic azides with empirical formula Cn(N3)m
Authors:Tnu Mahajan  Gaurav Bhargava  Hitesh Sharma
Affiliation:Department of Applied Sciences, IKGPTU, Kapurthala, Punjab, India
Abstract:The structural, electronic, and thermodynamical properties of Cn(N3)m (n = 1–7) (m = 4, 6) organic azides have been investigated using Density Functional Calculations. The ground state structures of organic azides were compared with CnHm (n = 1–7) (m = 4, 6) cumulenes which shows their higher relative stability. The stability and reactivity of organic azides were analyzed by calculating the HOMO-LUMO gap, binding energies, and harmonic frequencies of the azides. The binding energy and formation energy of Cn(N3)m (n = 1–7) (m = 4, 6) organic azides suggest their energetic stability. The structural analysis of the azide group in Cn(N3)m (n = 1–7) (m = 4, 6) organic azide shows a tendency to stabilize at a maximum separation between functional azide groups. Ionization potential, electron affinities, and global hardness have been computed for Cn(N3)m (n = 1–7) (m = 4, 6) organic azides and the odd–even alternation rule was observed. The molecular dynamic simulation performed at 300 K for 1 fs confirms organic azide's structural stability at room temperature, except for C4(N3)4, and the members of their family can be synthesized.
Keywords:binding energy  density functional theory  electronic stability  organic azides  structural stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号