首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Excitation energy dependence of fragment characteristics for the photofission of 232Th
Institution:1. Reactor Physics and Systems Behaviour Laboratory, Paul Scherrer Institut, Villigen, Switzerland;2. Nuclear Data Section, IAEA, Vienna, Austria;3. University of Uppsala, Sweden;4. Culham Centre for Fusion Energy, Abingdon, UK;1. Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14153 Teltow, Germany;2. Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
Abstract:Independent and cumulative product yields were measured for the photofission of 232Th with bremsstrahlung with endpoint energies 6.5, 7.0, 8.0, 11.0, 12.0, and 14.0 MeV, applying γ spectrometric techniques on catcherfoils and pneumatically transported 232Th-samples. The independent heavy fragment yields for the fission of the 232Th compound nucleus at excitation energies in the vicinity of the fission barrier were deduced. Postneutron mass, isobaric charge, isotopic mass distributions, isotonic and elemental yield distributions and proton odd-even effects were obtained from these independent yields. In the mass distributions a maximum yield is observed for mass splits with heavy fragments in the region of A = 142, corresponding with a high production of Ba(Z = 56) - isotopes. A slightly increased yield is also observed for mass splits with heavy mass in the vicinity of A = 134. The latter effect increases with increasing compound nucleus excitation energy. The similarity between the mass distributions of the N = 142 fissioning systems 232Th, 234U and 236Pu is striking. For low excitation energy the proton odd-even effect in the element distributions amounts to 30%, while on the other hand no sizeable neutron odd-even effect could be deduced from the isotonic distributions. The proton odd-even effects remain constant up to compound nucleus excitation energies of about 7.85 MeV. For higher compound nucleus excitation energies the proton odd-even effect drops rapidly. A possible explanation of these observations in terms of pair breaking at the outer barrier is proposed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号