Abstract: | The oxidation of trans-stilbene, phenylacetylene, and diphenylacetylene by Tl(OAc)3 in aqueous acetic acid medium in the presence of HClO4 follows the rate law in [H+] of 0.1–1.0M, the [H+] dependence below 0.1M being marginal. The reactions are strongly dielectric dependent. The order of reactivity among the substrates is styrene > phenylacetylene and trans-stilbene > diphenylacetylene. A mechanism involving the oxythallation adduct by the Tl+(OAc)2 species has been discussed. The use of Ru(III) as a homogeneous catalyst brings a change in the kinetic orders for trans-stilbene, the rate law being The formation constants K for the Ru(III)–alkene π complex at 40, 50, and 60°C are 90.14M?1, 105.2M?1, and 127.7M?1, respectively. Interestingly the oxidation of phenylacetylene and diphenylacetylene does not undergo catalysis by Ru(III). The mechanism involving the metal–arene π complex is discussed. |