首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spectral characteristics and synchrony in primary auditory-nerve fibers in response to pure-tone acoustic stimuli
Authors:Malvin C Teich  Shyam M Khanna  Patrick C Guiney
Institution:(1) Departments of Electrical Engineering and Applied Physics, Columbia University, 10027 New York, New York;(2) Fowler Memorial Laboratory, Department of Otolaryngology, Columbia College of Physicians & Surgeons, 10032 New York, New York;(3) Department of Electrical Engineering, Columbia University, 10027 New York, New York
Abstract:Under pure-tone stimulation, the spectrum of the period histogram recorded from primary auditory-nerve fibers at low and medium frequencies contains components at DC, at the applied tone frequency (the fundamental), and at a small number of harmonics of the tone frequency. The magnitudes and phases of these spectral components are examined. The spectral magnitudes of the fundamental and various harmonic components generally bear a fixed proportionality to each other over a broad range of signal conditions and nerve-fiber characteristics. This implies that the shape of the underlying rectified wave remains essentially unchanged over a broad range of stimulus intensities. For high-frequency stimuli, the fundamental and harmonic components are substantially attenuated. We provide a theoretical basis for the decrease of the spectralcomponent magnitudes with increasing harmonic number. For low-frequency pure-tone signals, the decrease is caused principally by the uncertainty in the position of neural-event occurrences within the half-wave-rectified period histogram. The lower the stimulus frequency, the greater this time uncertainty and therefore the lower the frequency at which the spectral components begin to diminish. For high-frequency pure-tone signals, on the other hand, the decrease is caused principally by the frequency rolloff associated with nervespike time jitter (it is then called loss of phase locking or loss of synchrony). Since some of this jitter arises from noise in the auditory nerve, it can be minimized by using peak detection rather than level detection. Using a specially designed microcomputer that measures the times at which the peaks of the action potentials occur, we have demonstrated the presence of phase locking to tone frequencies as high as 18 kHz. The traditional view that phase locking is always lost above 6 kHz is clearly not valid. This indicates that the placeversus-periodicity dichotomy in auditory theory requires reexaraination.
Keywords:Stochastic point process  auditory-nerve fibers  pure tones  neural coding  spectral characteristics  synchrony
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号