首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics
Authors:Yang Zhen-Biao
Institution:Department of Electronic Science and Applied Physics Fuzhou University, Fuzhou 350002, China
Abstract:An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom--cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom--cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger--Horne--Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.
Keywords:teleportation  two-atom entangled state  resonant cavity QED
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号