首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Excited state proton transfer and solvent relaxation of a 3-hydroxyflavone probe in lipid bilayers
Authors:Das Ranjan  Klymchenko Andrey S  Duportail Guy  Mély Yves
Institution:Ranjan.Das@pharma.u-strasbg.fr, aklymchenko@pharma.u-strasbg.fr.
Abstract:The photophysics of a ratiometric fluorescent probe, N-4'- N, N-diethylamino-3-hydroxy-6-flavonyl]methyl]- N-methyl- N-(3-sulfopropyl)-1-dodecanaminium, inner salt (F2N12S), incorporated into phospholipid unilamellar vesicles is presented. The reconstructed time-resolved emission spectra (TRES) unravels a unique feature in the photophysics of this probe. TRES exhibit signatures of both an excited-state intramolecular proton transfer (ESIPT) and a dynamic Stokes shift associated with solvent relaxation in the lipid bilayer. The ESIPT is fast, being characterized by a risetime of approximately 30-40 ps that provides an equilibrium to be established between the excited normal (N*) and the ESIPT tautomer (T*) on a time scale of 100 ps. On the other hand, the solvent relaxation displays a bimodal decay kinetics with an average relaxation time of approximately 1 ns. The observed slow solvent relaxation dynamics likely embodies a response of nonspecific dipolar solvation coupled with formation of probe-water H-bonds as well as the relocation of the fluorophore in the lipid bilayer. Taking into account that ESIPT and solvent relaxation are governed by different physicochemical properties of the probe microenvironment, the present study provides a physical background for the multiparametric sensing of lipid bilayers using ESIPT based probes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号