首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluating a branch-and-bound RLT-based algorithm for minimum sum-of-squares clustering
Authors:Email author" target="_blank">Daniel?AloiseEmail author  Pierre?Hansen
Institution:1.Department of Production Engineering,Universidade Federal do Rio Grande do Norte,Natal,Brazil;2.HEC Montréal and GERAD,Montréal,Canada
Abstract:Minimum sum-of-squares clustering consists in partitioning a given set of n points into c clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. Recently, Sherali and Desai (JOGO, 2005) proposed a reformulation-linearization based branch-and-bound algorithm for this problem, claiming to solve instances with up to 1,000 points. In this paper, their algorithm is investigated in further detail, reproducing some of their computational experiments. However, our computational times turn out to be drastically larger. Indeed, for two data sets from the literature only instances with up to 20 points could be solved in less than 10 h of computer time. Possible reasons for this discrepancy are discussed. The effect of a symmetry breaking rule due to Plastria (EJOR, 2002) and of the introduction of valid inequalities of the convex hull of points in two dimensions which may belong to each cluster is also explored.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号