首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A fluid flow model in the lacunar-canalicular system under the pressure gradient and electrical field driven loads
Authors:Wu  Xiaogang  Wang  Xiyu  Li  Chaoxin  Wang  Zhaowei  Sun  Yuqin  Yan  Yang  Qin  Yixian  Li  Pengcui  Wang  Yanqin  Wei  Xiaochun  Chen  Weiyi
Institution:1. College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;2. Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Taiyuan 030001, China
Abstract:

The lacunar-canalicular system (LCS) is acknowledged to directly participate in bone tissue remodeling. The fluid flow in the LCS is synergic driven by the pressure gradient and electric field loads due to the electro-mechanical properties of bone. In this paper, an idealized annulus Maxwell fluid flow model in bone canaliculus is established, and the analytical solutions of the fluid velocity, the fluid shear stress, and the fluid flow rate are obtained. The results of the fluid flow under pressure gradient driven (PGD), electric field driven (EFD), and pressure-electricity synergic driven (P-ESD) patterns are compared and discussed. The effects of the diameter of canaliculi and osteocyte processes are evaluated. The results show that the P-ESD pattern can combine the regulatory advantages of single PGD and EFD patterns, and the osteocyte process surface can feel a relatively uniform shear stress distribution. As the bone canalicular inner radius increases, the produced shear stress under the PGD or P-ESD pattern increases slightly but changes little under the EFD pattern. The increase in the viscosity makes the flow slow down but does not affect the fluid shear stress (FSS) on the canalicular inner wall and osteocyte process surface. The increase in the high-valent ions does not affect the flow velocity and the flow rate, but the FSS on the canalicular inner wall and osteocyte process surface increases linearly. In this study, the results show that the shear stress sensed by the osteocyte process under the P-ESD pattern can be regulated by changing the pressure gradient and the intensity of electric field, as well as the parameters of the annulus fluid and the canaliculus size, which is helpful for the osteocyte mechanical responses. The established model provides a basis for the study of the mechanisms of electro-mechanical signals stimulating bone tissue (cells) growth.

Keywords:bone canaliculi  osteocyte process  pressure gradient  electricity  fluid shear stress (FSS)  
本文献已被 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号