首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of crystallite size on acetone hydrogenation over copper catalysts
Authors:Rao Rajeev S  Walters Arden B  Vannice M Albert
Institution:Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Abstract:Acetone hydrogenation was studied over a family of Cu/SiO2 catalysts as well as UHP Cu powder and a Cu chromite catalyst. Oxygen chemisorption via dissociative N2O adsorption was used to count surface Cu atoms and calculate crystallite sizes, and a microwave absorption technique was used to measure the electrical conductivity of these Cu particles. Under differential reaction conditions at 423 K and 1 atm, all catalysts exhibited deactivation on stream and activities were typically 10-20% of their initial values after 3-4 h on stream. However, initial turnover frequencies (TOFs) varied from 0.056 s(-1) on the most highly dispersed Cu catalyst to 0.50 s(-1) on Cu powder, with the highest TOF of 2.4 s(-1) occurring on 110 nm crystallites. A similar trend with a broader (80-fold) variation was observed in the "steady-state" TOF values. Apparent activation energies varied between 11 and 14 kcal/mol. These initial TOF values are in good agreement with previous results, and a correlation exists between TOF and Cu crystallite size in this reaction, which appears to be structure sensitive. In addition, the electrical conductivity of these dispersed Cu nanoparticles, which was always less than that of bulk Cu, also increased with increasing Cu crystallite size; consequently, the change in this parameter may offer a possible explanation for the increase in TOF.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号