首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Critical Behavior of Two Interacting Linear Polymer Chains in a Good Solvent
Authors:Sanjay Kumar  Yashwant Singh
Institution:(1) Department of Physics, Banaras Hindu University, 221005 Varanasi, India
Abstract:A model of two interacting (chemically different) linear polymer chains is solved exactly using the real-space renormalization group transformation on a family of Sierpinski gasket type fractals and on a truncated 4-simplex lattice. The members of the family of the Sierpinski gasket-type fractals are characterized by an integer scale factorb which runs from 2 to ∞. The Hausdorff dimensiond F of these fractals tends to 2 from below asb → ∞. We calculate the contact exponenty for the transition from the State of segregation to a State in which the two chains are entangled forb = 2-5. Using arguments based on the finite-size scaling theory, we show that forb→∞, y = 2 - v(b) d F, wherev is the end-toend distance exponent of a chain. For a truncated 4-simplex lattice it is shown that the system of two chains either remains in a State in which these chains are intermingled in such a way that they cannot be told apart, in the sense that the chemical difference between the polymer chains completely drop out of the thermodynamics of the system, or in a State in which they are either zipped or entangled. We show the region of existence of these different phases separated by tricritical lines. The value of the contact exponenty is calculated at the tricritical points.
Keywords:Segregation  entanglement  tricritical line  contact exponent  finite-size scaling  fractals
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号