首页 | 本学科首页   官方微博 | 高级检索  
     


A speculative study of 23-order fractional Laplacian modeling of turbulence: some thoughts and conjectures
Authors:Chen Wen
Affiliation:Department of Engineering Mechanics, Hohai University, No. 1 Xikang Road, Nanjing City, Jiangsu Province 210098, China. chenwen@hhu.edu.cn
Abstract:This study makes the first attempt to use the 23-order fractional Laplacian modeling of Kolmogorov -53 scaling of fully developed turbulence and enhanced diffusing movements of random turbulent particles. Nonlinear inertial interactions and molecular Brownian diffusivity are considered to be the bifractal mechanism behind multifractal scaling of moderate Reynolds number turbulence. Accordingly, a stochastic equation is proposed to describe turbulence intermittency. The 23-order fractional Laplacian representation is also used to model nonlinear interactions of fluctuating velocity components, and then we conjecture a fractional Reynolds equation, underlying fractal spacetime structures of Levy 23 stable distribution and the Kolmogorov scaling at inertial scales. The new perspective of this study is that the fractional calculus is an effective approach to modeling the chaotic fractal phenomena induced by nonlinear interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号