首页 | 本学科首页   官方微博 | 高级检索  
     

铁的冲击相变机制的分子动力学研究
引用本文:崔新林,祝文军,贺红亮,邓小良,李英骏. 铁的冲击相变机制的分子动力学研究[J]. 高压物理学报, 2007, 21(4): 433-438
作者姓名:崔新林  祝文军  贺红亮  邓小良  李英骏
作者单位:中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室,四川绵阳,621900;中国矿业大学(北京)力学与建筑工程学院,北京,100083;中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室,四川绵阳,621900;中国矿业大学(北京)力学与建筑工程学院,北京,100083
基金项目:国家自然科学基金NSAF联合基金重点项目(10476027),中国工程物理研究院科学技术基金(20050105),973项目(2005cb221500)
摘    要: 用分子动力学方法模拟计算了在冲击波加载条件下,单晶铁中的结构相变(由体心立方结构α相到六角密排结构ε相),相互作用势采用铁的嵌入式原子势(EAM),单晶铁样品的尺寸为28.7 nm×22.9 nm×22.9 nm,总原子数为1.28×106个。通过推动一个运动活塞对静止靶的作用来产生冲击压缩,加载方向沿单晶铁的[100]晶向。通过对原子位置的追踪,揭示了铁的冲击相变机制,计算结果表明相变机制包括两步:首先是在{011}面上的原子受到沿〈100〉晶向的压缩,使{011}面转化成正六角形密排面;然后是在{011}面上原子沿〈0-11〉晶向的滑移,完成由bcc结构到hcp结构的相变。同时发现滑移面只出现在与冲击波加载方向平行的(011)和(0-11)面上。

关 键 词:相变  冲击波  分子动力学
文章编号:1000-5773(2007)04-0433-06
收稿时间:2007-03-21
修稿时间:2007-04-26

Phase Transformation Mechanism of Single Crystal Iron from MD Simulation
CUI Xin-Lin,ZHU Wen-Jun,HE Hong-Liang,DENG Xiao-Liang,LI Ying-Jun. Phase Transformation Mechanism of Single Crystal Iron from MD Simulation[J]. Chinese Journal of High Pressure Physics, 2007, 21(4): 433-438
Authors:CUI Xin-Lin  ZHU Wen-Jun  HE Hong-Liang  DENG Xiao-Liang  LI Ying-Jun
Affiliation:1. Laboratory for Shock Wave and Denotation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900, China;2. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Abstract:Shock-induced phase transformation (body-centered cubic α phase to hexagonal close-packed ε phase) in single crystal iron has been investigated by means of molecular dynamics (MD) simulations using an embedded atom method (EAM) potential. The simulated dimension is 28.7 nm×22.9 nm×22.9 nm in size with 1.28×106 atoms. The shock wave is generated by using a piston impact on the sample along the [100] direction. By analyzing the motion history of atoms under shock compression, the phase transformation mechanism has been outlined. The simulation results show that the phase transformation mechanism contains two steps: the atoms on the {011} planes are compressed along the 〈100〉 direction to form a hexagon in the first step, and then the atoms on {011} planes in the 〈0-11〉 direction are slipped to create the hcp structure in the second step. The results also show that the slip planes are only the (011) and (0-11) planes which are parallel with the shock wave propagation.
Keywords:phase transformation  shock wave  molecular dynamics
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《高压物理学报》浏览原始摘要信息
点击此处可从《高压物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号