首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stochastic transition states: reaction geometry amidst noise
Authors:Bartsch Thomas  Uzer T  Hernandez Rigoberto
Institution:Center for Nonlinear Science and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA.
Abstract:Classical transition state theory (TST) is the cornerstone of reaction-rate theory. It postulates a partition of phase space into reactant and product regions, which are separated by a dividing surface that reactive trajectories must cross. In order not to overestimate the reaction rate, the dynamics must be free of recrossings of the dividing surface. This no-recrossing rule is difficult (and sometimes impossible) to enforce, however, when a chemical reaction takes place in a fluctuating environment such as a liquid. High-accuracy approximations to the rate are well known when the solvent forces are treated using stochastic representations, though again, exact no-recrossing surfaces have not been available. To generalize the exact limit of TST to reactive systems driven by noise, we introduce a time-dependent dividing surface that is stochastically moving in phase space, such that it is crossed once and only once by each transition path.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号