首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pinning mass-selected Agn clusters on the TiO2(110)-1x1 surface via deposition at high kinetic energy
Authors:Tong Xiao  Benz Lauren  Chrétien Steeve  Kemper Paul  Kolmakov Andrei  Metiu Horia  Bowers Michael T  Buratto Steven K
Institution:Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
Abstract:We present the first scanning tunneling microscopy (STM) study of the deposition of mass-selected silver clusters (Ag(n),n=1, 2, 3) on a rutile TiO(2)(110)-1x1 surface at room temperature under hard-landing conditions. Under hard-landing conditions, only small features are observed on the surface in all cases without sintering or surface damage. This suggests that the high impact energy of the clusters mainly dissipates as thermal energy in the substrate, resulting in the recovery of any initial impact-induced surface damage and the formation of bound clusters on the surface near the impact point. STM images indicate that Ag(1) binds on the bridging oxygen rows twice as often as on the Ti rows. Density-functional Theory (DFT) calculations are consistent with Ag(1) binding at either bridging oxygen vacancies or with two adjacent bridging oxygen atoms in the same bridging oxygen row. STM images of Ag(2) and Ag(3) depositions indicate almost exclusive binding centered on the Ti-atom rows. DFT calculations suggest that the Ag(2) and Ag(3) clusters are bound between two bridging oxygen rows, which is consistent with the STM observations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号