首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An electrochemical and structural investigation of porous composite anode materials for LIB
Authors:Hai-peng Zhao  Gang Zhang  Changyin Jiang  Xiangming He
Institution:1. Department of Chemistry and Chemical Engineering, He Nan University of Urban Construction, Pingdingshan, Henan, China, 467044
2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China, 100084
Abstract:A porous composite anode for lithium ion battery (LIB) was investigated. The composite anode was prepared by electrodepositing Sn?CSb alloy on a template-like electrode and then annealing it in the atmosphere of N2, whereas the porous template-like electrode was obtained by forming a sponge-like porous membrane on a copper foil via a mixed phase inversion process, followed by pre-plating Cu through membrane pores in it. SEM and XRD results showed that composite structure of the anode consisted of electrodeposited Sn?CSb alloy dispersed in a PAN-pyrolyzed conjugated conducting polymer gridding, which was tightly connected with the Cu foil through transition alloy layer formed by heat treatment. Due to its relatively reasonable microcosmic structure, the composite anode presented better cycling performance and specific capacity retention during charging and discharging at diverse rates. When cycled between 0 and 2.0?V (vs Li/Li+) at 0.5?C rate, the reversible charge/discharge capacity of the composite material remained 415 and 414.8?mAh?g?1, respectively, after 30 cycles, corresponding to 82.9% of the capacity retention. When charging and discharging at 2?C rate, the composite material electrode showed 71.7% capacity retention at the 30th cycle.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号