首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dual functional catalysis for ethylene polymerization to branched polyethylene. I. Evaluation of catalytic systems
Authors:David L Beach  Yury V Kissin
Abstract:Synthesis of low-density polyethylene, that is, a density of less than 0.925 g/cm3, has traditionally been accomplished by the use of free-radical initiators at high ethylene pressures or of an alpha olefin comonomer such as 1-butene at lower pressures. We investigated an alternative route to branched, low-density polyethylene with a single monomer, ethylene, as the feed in conjunction with multicomponent catalyst systems capable of in situ dimerization of ethylene and subsequent copolymerization to produce low-density polyethylene. This article discusses the details of the evaluation of a number of dual-functional systems based on Ziegler-Natta catalysts. Specific, well defined, dual-functional catalyst systems which could easily produce branched, low-density polyethylene with levels of 20–30 branches per 1000 carbon atoms were developed. Variations in the relative number of component catalysts resulted in systematic, predictable changes in the properties of the polyethylene produced, which demonstrated the utility of the dual-functional catalyst concept.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号