首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coating flow theory by finite element and asymptotic analysis of the navier-stokes system
Authors:S F Kistler  L E Scriven
Abstract:Coating flows are laminar free surface flows, preferably steady and two-dimensional, by which a liquid film is deposited on a substrate. Their theory rests on mass and momentum accounting for which Galerkin's weighted residual method, finite element basis functions, isoparametric mappings, and a new free surface parametrization prove particularly well-suited, especially in coping with the highly deformed free boundaries, irregular flow domains, and the singular nature of static and dynamic contact lines where fluid interfaces intersect solid surfaces. Typically, short forming zones of rapidly rearranging two-dimensional flow merge with simpler asymptotic regimes of developing or developed flow upstream and downstream. The two-dimensional computational domain can be shrunk in size by imposing boundary conditions from asymptotic analysis of those regimes or by matching to one-dimensional finite element solutions of asymptotic equations. The theory is laid out with special attention to conditions at free surfaces, contact lines, and open inflow and outflow boundaries. Efficient computation of predictions is described with emphasis on a grand Newton iteration that converges rapidly and brings other benefits. Sample results for curtain coating and roll coating flows of Newtonian liquids illustrate the power and effectiveness of the theory.
Keywords:Coating Flows  Viscous Flows  Free Surfaces  Free Boundaries  Boundary  Parameterization Moving Spine Method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号