首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络的自适应删剪学习算法及其应用
引用本文:陈戍,常胜江,袁景和,张延炘,K.W.Wong. 神经网络的自适应删剪学习算法及其应用[J]. 物理学报, 2001, 50(4): 674-681
作者姓名:陈戍  常胜江  袁景和  张延炘  K.W.Wong
作者单位:南开大学现代光学研究所教育部光学信息技术科学开放实验室,天津300071
基金项目:国家自然科学基金(批准号:69877005)资助的课题.
摘    要:在局域卡尔曼滤波算法的基础上,提出了一种自适应删剪学习算法,这一算法的核心是用网络训练结束后得到的局域的误差协方差矩阵测量权重的重要性,通过删除不重要的权重,得到一个紧凑的网络结构.广义异或逻辑函数和手写体数字识别的计算机模拟结果显示该方法是一种有效的网络规模优化算法关键词:神经网络模式识别广义卡尔曼滤波删剪

关 键 词:神经网络  模式识别  广义卡尔曼滤波  删剪
收稿时间:2000-05-28
修稿时间:2000-05-28

ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION
CHEN SHU,CHANG SHENG-JIANG,YUAN JING-HE,ZHANG Yan-xin,K.W.Wong. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION[J]. Acta Physica Sinica, 2001, 50(4): 674-681
Authors:CHEN SHU  CHANG SHENG-JIANG  YUAN JING-HE  ZHANG Yan-xin  K.W.Wong
Abstract:Finding an optimal network size is one of the major concerns when building a neural network. In using the local extended Kalman filter (EKF) algorithm, we propose an efficient approach that combines EKF training and pruning as a whole. In particular, the covariance matrix obtained along with the local EKF training can be utilized to indicate the importance of the network weights. As a result, the network size can be determined adaptively to keep pace with the changes in input characteristics. The effectiveness of this algorithm is demonstrated on generalized XOR logic function and handwritten digit recognition.
Keywords:neural networks   pattern recognition   extended Kalman filtering   pruning
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号