首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heats of formation and singlet-triplet separations of hydroxymethylene and 1-hydroxyethylidene
Authors:Matus Myrna H  Nguyen Minh Tho  Dixon David A
Institution:Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, USA.
Abstract:Thermochemical parameters of hydroxymethylene (HC:OH) and 1-hydroxyethylidene (CH3C:OH) were evaluated by using coupled-cluster, CCSD(T), theory, in conjunction with the augmented correlation consistent, aug-cc-pVnZ, basis sets, with n = D, T, Q, and 5, extrapolated to the complete basis set limit. The predicted value at 298 K for Delta Hf(CH2O) is -26.0 +/- 1 kcal/mol, as compared to an experimental value of -25.98 +/- 0.01 kcal/mol, and for Delta Hf(CH:OH) it is 26.1 +/- 1 kcal/mol. The hydroxymethylene-formaldehyde energy gap is 52.1 +/- 0.5 kcal/mol, the singlet-triplet separation of hydroxymethylene is Delta E(ST)(HC:OH) = 25.3 +/- 0.5 kcal/mol, the proton affinity is PA(HC:OH) = 222.5 +/- 0.5 kcal/mol, and the ionization energy is IEa(HC:OH) = 8.91 +/- 0.04 eV. The predicted value at 298 K for Delta Hf(CH3CHO) is -39.1 +/- 1 kcal/mol as compared to an experimental value of -40.80 +/- 0.35 kcal/mol, and for Delta Hf(CH3C:OH) it is 11.2 +/- 1 kcal/mol. The hydroxyethylidene-acetaldehyde energy gap is 50.6 +/- 0.5 kcal/mol, the singlet-triplet separation of 1-hydroxyethylidene is Delta E(ST)(CH3C:OH) = 30.5 +/- 0.5 kcal/mol, the proton affinity is PA(CH3C:OH) = 234.7 +/- 0.5 kcal/mol, and the ionization energy is IEa(CH3C:OH) = 8.18 +/- 0.04 eV. The calculated energy differences between the carbene and aldehyde isomers, and, thus, the heats of formation of the carbenes, differ from the experimental values by 2.5 kcal/mol.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号