首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Maxwell's demon and the entropy cost of information
Authors:Paul N Fahn
Institution:(1) Information Systems Laboratory, Stanford University, 94305-4055 Stanford, California
Abstract:We present an analysis of Szilard's one-molecule Maxwell's demon, including a detailed entropy accounting, that suggests a general theory of the entropy cost of information. It is shown that the entropy of the demon increases during the expansion step, due to the decoupling of the molecule from the measurement information. It is also shown that there is an entropy symmetry between the measurement and erasure steps, whereby the two steps additivelv share a constant entropy change, but the proportion that occurs during each of the two steps is arbitrary. Therefore the measurement step may be accompanied by an entropy increase, a decrease, or no change at all, and likewise for the erasure step. Generalizing beyond the demon, decorrelation between a physical system and information about that system always causes an entropy increase in the joint system comprised of both the original system and the information. Decorrelation causes a net entropy increase in the universe unless, as in the Szilard demon, the information is used to decrease entropy elsewhere before the correlation is lost. Thus, information is thermodynamically costly precisely to the extent that it is not used to obtain work from the measured system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号