首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular encapsulation via metal-to-ligand coordination in a Cu(I)-folded molecular basket
Authors:Rieth Stephen  Yan Zhiqing  Xia Shijing  Gardlik Matthew  Chow Albert  Fraenkel Gideon  Hadad Christopher M  Badjić Jovica D
Institution:Department of Chemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, USA.
Abstract:A molecular basket, composed of a semirigid C3v symmetric tris-norbornadiene framework and three pyridine flaps at the rim, has been shown to coordinate to a Cu(I) cation and thereby fold in a multivalent fashion. The assembly was effective (Ka = 1.73 +/- 0.08 x 10(5) M(-1)) and driven by enthalpy (DeltaH(o) = -7.2 +/- 0.1 kcal/mol, DeltaS(o) = -0.25 eu). Variable temperature (1)H NMR studies, assisted with 2D COSY and ROESY investigations, revealed the existence of Cu(I)-folded basket 10b with a molecule of acetonitrile occupying its interior and coordinated to the metal. Interestingly, 10b is in equilibrium with Cu(I)-folded 10a , whose inner space is solvated by acetone or chloroform. The incorporation of a molecule of acetonitrile inside 10a was found to be driven by enthalpy (DeltaH(o) = -3.3 +/- 0.1 kcal/mol), with an apparent loss in entropy (DeltaS(o) = -9.4 +/- 0.4 eu); this is congruent with a complete immobilization of acetonitrile and release of a "loosely" encapsulated solvent molecule during 10a/b interconversion. From an Eyring plot, the activation enthalpy for incorporating acetonitrile into 10a was found to be positive (DeltaH(double dagger) = 6.5 +/- 0.5 kcal/mol), while the activation entropy was negative (DeltaS(double dagger) = -20 +/- 2 eu). The results are in agreement with an exchange mechanism whereby acetonitrile "slips" into an "empty" basket through its side aperture. In fact, DFT (BP86) calculations are in favor of such a mechanistic scenario; the calculations suggest that opening of the basket's rim to exchange guests is energetically demanding and therefore less feasible.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号