Abstract: | This paper deals with the numerical solution of time fractional diffusion equation. In this work, we consider the fractional derivative in the sense of Riemann-Liouville. At first, the time fractional derivative is discretized by integrating both sides of the equation with respect to the time variable and we arrive at a semi–discrete scheme. The stability and convergence of time discretized scheme are proven by using the energy method. Also we show that the convergence order of this scheme is O(τ2?α). Then we use the sinc collocation method to approximate the solution of semi–discrete scheme and show that the problem is reduced to a Sylvester matrix equation. Besides by performing some theorems, the exponential convergence rate of sinc method is illustrated. The numerical experiments are presented to show the excellent behavior and high accuracy of the proposed hybrid method in comparison with some other well known methods. |