首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of flow field of clap and fling motion using immersed boundary coupled lattice Boltzmann method
Institution:1. Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China;2. Collaborative Innovation Center for Cancer Medicine, Zhejiang University, Guangzhou, China;1. Instituto de Química Aplicada. Universidad del Papaloapan. Circuito Central 200, colonia Parque Industrial, Tuxtepec, Oaxaca, México 68301;2. Programa de Posgraduados en Ingeniería de la Producción y Sistemas (PPGEPS). Pontificia Universidad Católica de Paraná (PUCPR). Inmaculada Concepción 1155(80215-901). Curitiba (PR), Brasil;3. Instituto Universitario de Automática e Informática Industrial. Universidad Politécnica de Valencia. Camino de Vera s/n 46022. Valencia, España;4. Departamento de Ingeniería Química y Bioquímica. Instituto Tecnológico de Veracruz. Av. Miguel Ángel de Quevedo 2779. Veracruz, Ver., México 91860;1. European Spallation Source ESS AB, Lund SE22100 Sweden;2. Mid-Sweden University, Sundsvall, Sweden;3. Institut Laue-Langevin ILL, Grenoble, France;1. Department of Mathematics, I??k University, Me?rutiyet Koyu, ?ile ?stanbul, Turkey;2. Department of Mathematics and Computer Sciences, ?stanbul Kültür University, ?stanbul, Turkey;1. G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences, 36 Vernadsky blvd., Kiev 03680, Ukraine;2. Department MTM, Catholic university of Leuven, Kasteelpark Arenberg 44, 3001, Leuven (Heverlee), Belgium
Abstract:This paper deals with the investigation of flow field due to clap and fling mechanism using immersed boundary coupled with lattice Boltzmann method. The lattice Boltzmann method (LBM), an alternative to Navier–Stokes solver, is used because of its simplicity and computational efficiency in solving complex moving boundary problems. Benchmark problems are simulated to validate the code, which is then used for simulating flow over two elliptic wing of aspect ratio 5 performing clap and fling flapping motion for different flow parameters such as Reynolds number (Re=75, 100, 150), advance ratio (J=10E?3.10E?2,0.2) and frequency (f=0.05 Hz, 0.25 Hz). Numerical simulation is able to capture typical low Reynolds number unsteady phenomena such as, ?wake vortex wing interaction?, ?Kramer effect? and ?delayed stall?. The results are both qualitatively and quantitatively consistent with experimental observation. The parametric study involving different combinations of Re, f and J depict distinctly different aerodynamic performances providing physical insights into the flow physics. It is observed that a combination of low f, low J and high Re flow results in better aerodynamic performance. Pronounced lift enhancement via leading edge vortices are obtained in unsteady regime (J<1) compared to quasi-steady regime (J>1). The role of leading edge vortices in enhancing lift are investigated by studying the size and strength of these vortices for different flow conditions. For a given Re, the magnitude of maximum lift coefficient decreases with increasing f irrespective of the value of J; while the same is enhanced with the increasing Re.
Keywords:Lattice Boltzmann  Clap and fling  IBM–LBM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号