首页 | 本学科首页   官方微博 | 高级检索  
     


Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints
Authors:Arnaldo S. Brito  J. X. da Cruz Neto  Jurandir O. Lopes  P. Roberto Oliveira
Affiliation:(1) Federal University of Rio de Janeiro, Rio de Janeiro, Brazil;(2) Federal University of Piaui, Piaui, Brazil;(3) COPPE/Sistemas-Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Abstract:In this paper, we propose two interior proximal algorithms inspired by the logarithmic-quadratic proximal method. The first method we propose is for general linearly constrained quasiconvex minimization problems. For this method, we prove global convergence when the regularization parameters go to zero. The latter assumption can be dropped when the function is assumed to be pseudoconvex. We also obtain convergence results for quasimonotone variational inequalities, which are more general than monotone ones.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号