首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On Static Shells and the Buchdahl Inequality for the Spherically Symmetric Einstein-Vlasov System
Authors:Håkan Andréasson
Institution:1.Mathematical Sciences,Chalmers and G?teborg University,G?teborg,Sweden
Abstract:In a previous work 1] matter models such that the energy density ρ ≥ 0, and the radial- and tangential pressures p ≥ 0 and q, satisfy p + q ≤ Ωρ, Ω ≥ 1, were considered in the context of Buchdahl’s inequality. It was proved that static shell solutions of the spherically symmetric Einstein equations obey a Buchdahl type inequality whenever the support of the shell, R 0, R 1], R 0 > 0, satisfies R 1/R 0 < 1/4. Moreover, given a sequence of solutions such that R 1/R 0 → 1, then the limit supremum of 2M/R 1 was shown to be bounded by ((2Ω + 1)2 − 1)/(2Ω + 1)2. In this paper we show that the hypothesis that R 1/R 0 → 1, can be realized for Vlasov matter, by constructing a sequence of static shells of the spherically symmetric Einstein-Vlasov system with this property. We also prove that for this sequence not only the limit supremum of 2M/R 1 is bounded, but that the limit is ((2Ω + 1)2 − 1)/(2Ω + 1)2 = 8/9, since Ω = 1 for Vlasov matter. Thus, static shells of Vlasov matter can have 2M/R 1 arbitrary close to 8/9, which is interesting in view of 3], where numerical evidence is presented that 8/9 is an upper bound of 2M/R 1 of any static solution of the spherically symmetric Einstein-Vlasov system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号