首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Singularity Avoidance of Charged Black Holes in Loop Quantum Gravity
Authors:Mojtaba Taslimi Tehrani  Hoshang Heydari
Institution:1. Department of Physics, Stockholm University, 10691, Stockholm, Sweden
Abstract:Based on spherically symmetric reduction of loop quantum gravity, quantization of the portion interior to the horizon of a Reissner-Nordström black hole is studied. Classical phase space variables of all regions of such a black hole are calculated for the physical case M 2>Q 2. This calculation suggests a candidate for a classically unbounded function of which all divergent components of the curvature scalar are composed. The corresponding quantum operator is constructed and is shown explicitly to possess a bounded operator. Comparison of the obtained result with the one for the Schwarzschild case shows that the upper bound of the curvature operator of a charged black hole reduces to that of Schwarzschild at the limit Q→0. This local avoidance of singularity together with non-singular evolution equation indicates the role quantum geometry can play in treating classical singularity of such black holes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号