首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rotational analysis of the 7390- and 7937-Å bands of NO2 by means of Fourier transform spectroscopy
Authors:A Perrin  C Camy-Peyret  J-M Flaud  P Luc
Institution:Laboratoire de Physique Moléculaire et d''Optique Atmosphérique, CNRS Bât. 221, Campus d''Orsay, 91405 Orsay Cedex, France;Laboratoire Aimé Cotton, CNRS II, Bât.505, Campus d''Orsay, 91405 Orsay, France
Abstract:We have extended to higher N and to Ka = 3 and 4 the rotational analysis of the 7390-Å band of NO2 performed by K. E. Hallin and A. J. Merer (Canad. J. Phys.55, 2101–2112 (1977)). The lines belong to a perturbed parallel band for which Hallin and others have proposed the vibrational assignment (2 13 1)-(0 0 0) within the electronic ground state. These authors presumed that this band borrows its intensity through a vibronic coupling (spin-orbit and/or Coriolis coupling) from the stronger (0 2 0)-(0 0 0) band of the A?-X? electronic system at 7460 Å. We have observed about 900 transitions belonging to the Ka = 0, 1, 2, 3, 4 subbands of the (2 13 1)-(0 0 0) band for N values going up to about 23, and 300 lines of the “hot” band (2 13 1)-(0 1 0). We have also looked for spin-orbit-induced transitions and we have detected about 400 transitions with ΔN ≠ ΔJ. Among them ΔN = ±2 transitions with ΔKa = 0 or ± 2 have been observed, indicating that N and Ka are no longer good quantum numbers, and demonstrating clearly the existence of rovibronic interactions perturbing the upper levels of the transitions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号