首页 | 本学科首页   官方微博 | 高级检索  
     


CdS-containing nano-assemblies of double hydrophilic block copolymers in water
Authors:Mariusz Uchman  Karel Proch��zka  Katerina Gatsouli  Stergios Pispas  Milena ?p��rkov��
Affiliation:1. Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12840, Prague 2, Czech Republic
2. Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635, Athens, Greece
3. Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 16206, Prague 6, Czech Republic
Abstract:Two samples of poly(sodium(sulfamate-carboxylate)isoprene)-block-poly(ethylene oxide) copolymer (SCIEO-1 and SCIEO-2) differing in molecular weight and relative length of polyelectrolyte blocks have been used as templates for the synthesis of cadmium sulfide (CdS) nanoparticles in aqueous media. The double-hydrophilic copolymer SCIEO has very high 1D charge density, and its polymer chain structure mimics that of polysaccharide heparin. It is soluble in aqueous media, but the addition of cadmium acetate (Cd(Ac)2) to its aqueous solution causes the formation of micellar aggregates with Cd2+containing insoluble cores above the threshold Cd2+ concentration. The trapped Cd2+ ions can be chemically transformed to CdS nanoparticles. The stability of hybrid SCIEO/CdS micelles depends on the ratio of PEO-to-SCI lengths: it was found that the SCIEO-2 copolymer with sufficiently long PEO block behaves as an effective stabilizer for the synthesis of CdS nanoparticles embedded in micelles, while SCIEO-1 does not. The morphology of aggregates varies with the Cd-to-SCI ratios and ranges from spherical to mixture of spherical and necklace-like micellar aggregates. A number of experimental techniques including static and dynamic light scattering, fluorescence correlation spectroscopy, atomic force and transmission electron microscopy, UV-vis, and fluorescence spectroscopy were employed for the characterization of both CdS containing hybrid micelles and embedded CdS nanoparticles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号