Rational Engineering of a Dynamic,Entropy‐Driven DNA Nanomachine for Intracellular MicroRNA Imaging |
| |
Abstract: | We rationally engineered an elegant entropy‐driven DNA nanomachine with three‐dimensional track and applied it for intracellular miRNAs imaging. The proposed nanomachine is activated by target miRNA binding to drive a walking leg tethered to gold nanoparticle with a high density of DNA substrates. The autonomous and progressive walk on the DNA track via the entropy‐driven catalytic reaction of intramolecular toehold‐mediated strand migration leads to continuous disassembly of DNA substrates, accompanied by the recovery of fluorescence signal due to the specific release of a dye‐labeled substrate from DNA track. Our nanomachine outperforms the conventional intermolecular reaction‐based gold nanoparticle design in the context of an improved sensitivity and kinetics, attributed to the enhanced local effective concentrations of working DNA components from the proximity‐induced intramolecular reaction. Moreover, the nanomachine was applied for miRNA imaging inside living cells. |
| |
Keywords: | DNA-Nanomaschinen Goldnanopartikel Katalytische Reaktionen microRNA Sensoren |
|
|