首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantifying Hydrogen‐Bond Populations in Dimethyl Sulfoxide/Water Mixtures
Abstract:Dimethyl sulfoxide (DMSO) disrupts the hydrogen‐bond networks in water. The widespread use of DMSO as a cosolvent, along with its unusual attributes, have inspired numerous studies. Herein, infrared absorption spectroscopy of the S=O stretching mode combined with molecular dynamics and quantum chemistry models were used to directly quantify DMSO/water hydrogen‐bond populations in binary mixtures. Singly H‐bonded species are dominant at 10 mol %, due to strong DMSO–water interactions. We found an unexpected increase in non‐hydrogen‐bonded DMSO near the eutectic point (ca. 35 mol %) which also correlates with several abnormalities in the bulk solution properties. We find evidence for three distinct regimes: 1) strong DMSO–water interactions (<30 mol %), 2) ideal‐solution‐like (30–90 mol %), and 3) self‐interaction, or aggregation, regime (>90 mol %). We propose a “step in” mechanism, which involves hydrogen bonding between water and the DMSO aggregate species.
Keywords:Ab-initio-Rechnungen  Molekulare Dynamik  Phasenü  bergä  nge  Wasserstoffbrü  cken  Zeitaufgelö  ste Spektroskopie
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号