首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ligand effect in the synthesis of hyperbranched polymers via copper-catalyzed azide-alkyne cycloaddition polymerization (CuAACP)
Authors:Weiping Gan  Xiaosong Cao  Yi Shi  Lei Zou  Haifeng Gao
Institution:Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556
Abstract:Copper-catalyzed azide-alkyne cycloaddition polymerization (CuAACP) of AB2 monomers demonstrated a chain-growth mechanism without any external ligand because of the complexation of in situ formed triazole groups with Cu catalysts. In this study, we explored the use of various ligands that affected the polymerization kinetics to tune the polymers’ molecular weights and the degree of branching (DB). Eight ligands were studied, including polyethylene glycol monomethyl ether (PEG350, Mn = 350), tris(benzyltriazolylmethyl)amine (TBTA), 2,6-bis(1-undecyl-1H-benzod]imidazol-2-yl)pyridine (Py(DBim)2), 2,2′-bipyridyl (bpy), 4,4′-di-n-nonyl-2,2′-bipyridine (dNbpy), N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA), N,N,N′,N″,N″-penta(n-butyl)diethylenetriamine (PBuDETA), and N,N,N′,N″,N″-pentabenzyldiethylenetriamine (PBnDETA). All ligands except PEG350 exhibited stronger coordination with Cu(I) than the polytriazole polymer, which freed the Cu catalyst from polymers and resulted in dominant step-growth polymerization with simultaneous chain-growth feature. Meanwhile, the use of PEG350 ligand retained the confined Cu in the polymer, demonstrating a chain-growth mechanism, but lower polymer molecular weights as compared with the no-external-ligand polymerization. Results indicated that aliphatic substituent groups on ligands had little effect on the molecular weights and DB of the polymers, but rigid aromatic substituent groups decreased both values. By varying the ligand species and amounts, hyperbranched polymers with DB value ranging from 0.53 (TBTA]0/Cu]0 = 5) to 0.98 (PMDETA]0/Cu]0 = 2) have been achieved. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2238–2244
Keywords:chain-growth polymerization  copper-catalyzed azide-alkyne cycloaddition polymerization (CuAACP)  degree of branching  hyperbranched polymer  step-growth polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号