首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structures and properties of zirconia-supported ruthenium oxide catalysts for the selective oxidation of methanol to methyl formate
Authors:Li Weizhen  Liu Haichao  Iglesia Enrique
Institution:Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Green Chemistry Center, Peking University, Beijing 100871, China.
Abstract:The effects of RuO(x) structure on the selective oxidation of methanol to methyl formate (MF) at low temperatures were examined on ZrO(2)-supported RuO(x) catalysts with a range of Ru surface densities (0.2-3.8 Ru/nm(2)). Their structure was characterized using complementary methods (X-ray diffraction, Raman and X-ray photoelectron spectra, and reduction dynamics). The structure and reactivity of RuO(x) species change markedly with Ru surface density. RuO(x) existed preferentially as RuO(4)(2-) species below 0.4 Ru/nm(2), probably as isolated Zr(RuO(4))(2) interacting with ZrO(2) surfaces. At higher surface densities, highly dispersed RuO(2) domains coexisted with RuO(4)(2-) and ultimately formed small clusters and became the prevalent form of RuO(x) above 1.9 Ru/nm(2). CH(3)OH oxidation rates per Ru atom and per exposed Ru atom (turnover rates) decreased with increasing Ru surface density. This behavior reflects a decrease in intrinsic reactivity as RuO(x) evolved from RuO(4)(2-) to RuO(2), a conclusion confirmed by transient anaerobic reactions of CH(3)OH and by an excellent correlation between reaction rates and the number of RuO(4)(2-) species in RuO(x)/ZrO(2) catalysts. The high intrinsic reactivity of RuO(4)(2-) structures reflects their higher reducibility, which favors the reduction process required for the kinetically relevant C-H bond activation step in redox cycles using lattice oxygen atoms involved in CH(3)OH oxidation catalysis. These more reactive RuO(4)(2-) species and the more exposed ZrO(2) surfaces on samples with low Ru surface density led to high MF selectivities (e.g. approximately 96% at 0.2 Ru/nm(2)). These findings provide guidance for the design of more effective catalysts for the oxidation of alkanes, alkenes, and alcohols by the synthesis of denser Zr(RuO(4))(2) monolayers on ZrO(2) and other high surface area supports.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号