首页 | 本学科首页   官方微博 | 高级检索  
     


Lie theory and the Chern-Weil homomorphism
Authors:Anton Alekseev
Affiliation:Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, C.P. 64, 1211 Genève 4, Suisse; University of Toronto, Department of Mathematics, 100 St George Street, Toronto, Ontario M5S3G3, Canada
Abstract:Let PB be a principal G-bundle. For any connection θ on P, the Chern-Weil construction of characteristic classes defines an algebra homomorphism from the Weil algebra Wg=Sg⊗∧g into the algebra of differential forms A=Ω(P). Invariant polynomials inv(Sg)⊂Wg map to cocycles, and the induced map in cohomology inv(Sg)→H(Abasic) is independent of the choice of θ. The algebra Ω(P) is an example of a commutativeg-differential algebra with connection, as introduced by H. Cartan in 1950. As observed by Cartan, the Chern-Weil construction generalizes to all such algebras.In this paper, we introduce a canonical Chern-Weil map WgA for possibly non-commutativeg-differential algebras with connection. Our main observation is that the generalized Chern-Weil map is an algebra homomorphism “up to g-homotopy”. Hence, the induced map inv(Sg)→Hbasic(A) is an algebra homomorphism. As in the standard Chern-Weil theory, this map is independent of the choice of connection.Applications of our results include: a conceptually easy proof of the Duflo theorem for quadratic Lie algebras, a short proof of a conjecture of Vogan on Dirac cohomology, generalized Harish-Chandra projections for quadratic Lie algebras, an extension of Rouvière's theorem for symmetric pairs, and a new construction of universal characteristic forms in the Bott-Shulman complex.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号