首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction of Two Charges in a Uniform Magnetic Field: II. Spatial Problem
Authors:D Pinheiro  R S MacKay
Institution:(1) Departamentos de Matemática, Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;(2) Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
Abstract:The interaction of two charges moving in ℝ3 in a magnetic field B can be formulated as a Hamiltonian system with six degrees of freedom. Assuming that the magnetic field is uniform and the interaction potential has rotation symmetry, we reduce this system to one with three degrees of freedom. For special values of the conserved quantities, choices of parameters or restriction to the coplanar case, we obtain systems with two degrees of freedom. Specialising to the case of Coulomb interaction, these reductions enable us to obtain many qualitative features of the dynamics. For charges of the same sign, the gyrohelices either “bounce-back”, “pass-through”, or exceptionally converge to coplanar solutions. For charges of opposite signs, we decompose the state space into “free” and “trapped” parts with transitions only when the particles are coplanar. A scattering map is defined for those trajectories that come from and go to infinite separation along the field direction. It determines the asymptotic parallel velocities, guiding centre field lines, magnetic moments and gyrophases for large positive time from those for large negative time. In regimes where gyrophase averaging is appropriate, the scattering map has a simple form, conserving the magnetic moments and parallel kinetic energies (in a frame moving along the field with the centre of mass) and rotating or translating the guiding centre field lines. When the gyrofrequencies are in low-order resonance, however, gyrophase averaging is not justified and transfer of perpendicular kinetic energy is shown to occur. In the extreme case of equal gyrofrequencies, an additional integral helps us to analyse further and prove that there is typically also transfer between perpendicular and parallel kinetic energy.
Keywords:Hamiltonian dynamical systems  Nonintegrability  Euclidean symmetry  Reduction  Reconstruction  Scattering map
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号