Fabrication and properties of a novel superabsorbent composite based on coco peat and poly (acrylic acid) cross‐linked trimethylolpropane trimaleate under ultraviolet irradiation |
| |
Authors: | Xiaoyu Su Bo Bai Xiaohui Xu Chenxu Ding Honglun Wang Yourui Suo |
| |
Affiliation: | 1. College of Environmental Science and Engineering, Chang'an University, Xi'an, China;2. Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, China |
| |
Abstract: | A series of novel poly(acrylic acid)/coco peat (PAA/CP) superabsorbent composites were prepared via the ultraviolet irradiation copolymerization of acrylic acid monomer (PAA) and coco peat cellulose (CP) in the presence of the cross‐linker trimethylolpropane trimaleate. The physico‐chemical structures of obtained PAA/CP were characterized by Fourier transform infrared spectroscopy, thermogravimetry/derivative thermogravimetry, X‐ray diffraction, and scanning electron microscopy, respectively. The critical parameters of affecting the water absorbency of PAA/CP, including the cross‐linker level, amount of CP and reaction time, were studied in detailed. The experimental results showed that the PAA/CP samples exhibited the maximum swelling value of 523.09 g/g in distilled water and 40.52 g/g in 0.9 wt % NaCl solution. The swelling behaviors of PAA/CP were significantly relied on the concentration of salt solution and the pH of external solution. The effect of ions species on the swelling performance was in the order: Na+ > Ca2+ > Fe3+ , and in pH 2.2 and 7.2 aqueous solutions PAA/CP composites displayed better pH‐responsiveness and reversible on‐off switching characteristics. Urea, as an agrochemical model, was loaded into PAA/CP substrate to supply with nitrogen nutrient. The test of their loading and releasing diffusion performance of urea suggested that the urea loading percentage of PAA/CP was remarkably dependent on the concentration of aqueous urea solutions and the release of urea from loaded PAA/CP samples in water followed a non‐Fickian mechanism. Owing to their considerable good water absorption capacity, slow urea release, economical and environment‐friendly merits, PAA/CP composites could be exploited for the agriculture applications. Copyright © 2016 John Wiley & Sons, Ltd. |
| |
Keywords: | coco peat cellulose superabsorbent composite water absorbency loading and releasing of urea |
|
|