首页 | 本学科首页   官方微博 | 高级检索  
     


Branching ratio and L2 + L3 intensities of 3d-transition metals in phthalocyanines and the amine complexes
Authors:Koshino   Kurata   Isoda   Kobayashi
Affiliation:Institute for Chemical Research, Kyoto University, Uji, Japan.
Abstract:L(2,3) inner-shell excitation spectra were obtained by electron energy-loss spectroscopy (EELS) for the divalent first transition series metals in phthalocyanine complexes (MPc) such as titanium oxide phthalocyanine (TiOPc), fluoro-chromium phthalocyanine (CrFPc), manganese phthalocyanine (MnPc), iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), nickel phthalocyanine (NiPc) and copper phthalocyanine (CuPc). It was found that the value of normalized total intensity of I(L2 + L3) was nearly proportional to the formal electron vacancies of each 3d-state, and the values of the branching ratio, I(L3)/I((L2 + L3), represented a high-spin-state rather than low-spin-state for MnPc, FePc and NiPc. EELS was also applied to charge-transfer complexes of FePc with an amine such as pyridine or gamma-picoline. It was concluded that their I(L2 + L3) intensity of Fe showed the decrease in vacancies of 3d-states on the formation of the charge-transfer complex with these amines, which suggests some electron transfer from the amine to Fe in phthalocyanine. The EELS study provides beneficial information for investigating the electronic states of the specific metal sites in organic materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号