首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental study of shock-accelerated liquid layers
Authors:P Meekunnasombat  J G Oakley  M H Anderson  R Bonazza
Institution:(1) Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA
Abstract:An experimental investigation of a shock wave interacting with one, or several, liquid layer(s) is reported with a motivation towards first wall protection in inertial fusion energy reactor chamber design. A 12.8 mm or 6.4 mm thick water layer is suspended horizontally in a large vertical shock tube in atmospheric pressure argon and subjected to a planar shock wave of strength ranging from M = 1.34 to 3.20. For the single water layer experiments, the shock-accelerated liquid results in a significant increase in end-wall pressure loading (and impulse) compared with tests without water. The end-wall loading can be reduced by more than 50% for a given volume of water when it is divided into more than one layer with interspersed layer(s) of argon. A flash X-ray technique is employed to measure the volume fraction of the shocked water layer and multiple water layers are found to dissipate more energy through the liquid fragmentation process resulting in increased shock mitigation.
Keywords:Liquid layer  Shock loading  Liquid fragmentation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号