首页 | 本学科首页   官方微博 | 高级检索  
     


Non-Thermal Plasma Assisted Regeneration of Acetone Adsorbed TiO2 Surface
Authors:L. Sivachandiran  F. Thevenet  A. Rousseau
Affiliation:1. Université Lille Nord-de-France, 59000, Lille, France
2. Mines Douai, CE, 59508, Douai, France
3. Laboratoire de Physique des Plasmas, Ecole Polytechnique, UPMC, Université Paris Sud 11, CNRS, Palaiseau, France
Abstract:Improvement of indoor air quality regarding volatile organic compounds (VOCs) requires the development of innovative oxidation processes. This paper investigates the coupling of a metal oxide sorbent with non-thermal plasma (NTP) in an especially designed reactor. TiO2 was selected as model sorbent and acetone was used as model VOC. The analyses of gas phase species at the reactor downstream have been performed using FTIR spectroscopy. In a first step, acetone adsorption on TiO2 surface under dry air was characterized in terms of total amount adsorbed, as well as reversibly and irreversibly adsorbed fractions. Obtained results were compared and discussed with literature in terms of acetone reactive adsorption on TiO2 surface. Mesityloxide was proposed as the major compound in the irreversibly adsorbed fraction. In a second time, acetone saturated TiO2 surface was exposed to NTP surface discharge. Irrespectively of the injected power, <30 % of the initially adsorbed acetone has been recovered as CO, CO2 and desorbed acetone. Finally, thermal desorptions have been performed. They evidenced that (1) NTP treatment modifies the nature of the adsorbed organic species, (2) mineralization rate is considerably improved. Based on desorbed species temporal profile analysis, carboxylates and more especially formates are suggested as major adsorbed species after NTP treatment (Pinj > 0.2 W). This hypothesis has been evaluated and confirmed. This paper finally evidenced that NTP can be used as an efficient pretreatment technique to promote the mineralization of adsorbed acetone for further thermal treatment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号