首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of size and shape effects on the high-pressure solubility of n-alkanes: Experimental data, correlation and prediction
Authors:Urszula Domańska  Piotr Morawski
Affiliation:Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Abstract:(Solid + liquid) phase equilibria (SLE) of (n-hexadecane, or n-octadecane + 3-methylpentane, or 2,2-dimethylbutane, or benzene) at very high pressures up to about 1.0 GPa have been investigated at the temperature range from T = (293 to 353) K. The thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions was used. The pressure-temperature-composition relation of the high pressure (solid + liquid) phase equilibria, polynomial based on the general solubility equation at atmospheric pressure was satisfactorily used. Additionally, the SLE of binary systems (n-hexadecane, or n-octadecane + 3-methylpentane, or 2,2-dimethylbutane, or benzene, or n-hexane or cyclohexane) at normal pressure was discussed. The results at high pressures were compared for every system to these at normal pressure. The influence of the size and shape effects on the solubility at 0.1 MPa and high pressure up to 600 MPa was discussed.The main aim of this work was to predict the mixture behaviour using only pure components data and cubic equation of state in the wide range of pressures, far above the pressure range which cubic equations of state are normally applied to. The fluid phase behaviour is described by the corrected SRK-EOS and the van der Waals one fluid mixing rules.
Keywords:n-Alkanes   High pressure (solid     liquid) equilibria   Correlation and prediction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号