首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multifunctional covalently stabilized vesicles acting simultaneously as the template of gold nanoparticle cluster and the nanocarrier of guest molecules
Authors:Lin LiMan-Ling Wang  Yu Chen  Shi-Chun Jiang
Institution:a Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
b Department of Polymer Materials Science and Engineering, School of Material Science and Engineering, Tianjin University, 300072 Tianjin, People’s Republic of China
Abstract:The terminal hydroxyl groups of amphiphilic multiarm star copolymers with a hydrophilic hyperbranched polyethylenimine (PEI) core and hydrophobic poly(ε-caprolactone) (PCL) arms were partially or completely transformed into the radical-crosslinkable methacrylate (MA) groups (PEI-b-PCL-MA). The resulting PEI-b-PCL-MA polymers with 100% MA substitution self-assembled in water into simple vesicles, whereas those with partial MA substitution aggregated into complex vesicles. These structures could be proved by transmission electron microscopy and dynamic light scattering only after crosslinking the intra-vesicular MA groups that generated the covalently stabilized vesicles (CSVs). The obtained CSVs could be used as host for the formation of gold nanoparticle (AuNP) cluster, and the AuNP clusters stabilized by the CSVs were stable under a wider range of CSV/AuNP feed ratio than those stabilized by the uncrosslinked precursors. The diameter of AuNPs in the clusters was in the range of 4-6 nm, and the distance of adjacent AuNPs could be modulated through altering the feed ratio of CSV/AuNP. The color of the solutions of AuNPs with CSV could be tuned from brown to red, purple, even blue. The composites of CSV and AuNPs could be further used as nanocarriers to accommodate hydrophobic guest of pyrene, and a higher amount of AuNPs in the nanocarriers led to a lower encapsulation capacity for pyrene guests.
Keywords:Gold nanoparticle  Nanocarrier  Self assemble  Star polymers  Vesicles
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号