首页 | 本学科首页   官方微博 | 高级检索  
     


Ketene-ketenimine rearrangements in the gas phase and in polar media. 1,3-Migration intermediates and sequential transition states
Authors:Finnerty Justin J  Wentrup Curt
Affiliation:Chemistry Building, School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Qld 4072, Australia.
Abstract:[reaction: see text] Calculations of the activation barrier for the 1,3-shifts of substituents X in alpha-imidoylketenes 1 (HN=C(X)-CH=C=O), which interconverts them with alpha-oxoketenimines 3 (HN=C=CH-C(X)=O) via a four-membered cyclic transition state TS2 have been performed at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G* level. Substituents with accessible lone pairs have the lowest activation barriers for the 1,3-shift (halogens, OR, NR2). The corresponding activation barriers for the alpha-oxoketene-alpha-oxoketene rearrangement of 4 via TS5 are generally lower by 1-30 kJ/mol. A polar medium (acetonitrile, epsilon = 36.64) was simulated using the polarizable continuum (PCM) solvation model. The effect of the solvent field is a reduction of the activation barrier by an average of 12 kJ/mol. In the cases of 1,3-shifts of amino and dimethylamino groups, the stabilization of the transition state TS2 in a solvent field is so large that it becomes an intermediate, Int2, flanked by transition states (TS2' and TS2') that are due primarily to internal rotation of the amine functions, and secondarily to the 1,3-bonding interaction. In the case of the alpha-oxoketene-alpha-oxoketene rearrangement of 4, there is a corresponding intermediate Int5 for the 1,3-amine shift already in the gas phase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号