首页 | 本学科首页   官方微博 | 高级检索  
     


Spin-phonon coupling in multiferroic manganites RMnO3: comparison of pure (R = Eu, Gd, Tb) and substituted (R = Eu1-xYx) compounds
Authors:S. Issing   A. Pimenov   Y. Vu. Ivanov   A. A. Mukhin  J. Geurts
Affiliation:(1) School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, 452017 Indore, India
Abstract:For rare-earth manganite RMnO3 compounds spin-phonon coupling manifests itself as a phonon softening in the temperature range of the magnetically ordered phases. Within this class of materials, a continuous tuning of the lattice and thus also of the magnetic properties of multiferroic manganites is achieved by Y doping in substituted Eu1- x Y x MnO3. We compare the impact on spin-phonon coupling within this partial-substitution approach in a series of Eu1- x Y x MnO3 samples 0 x 0.5) with the effect of a complete exchange of the rare earth ions R3+ in a series of pure RMnO3 compounds (R = Eu, Gd, Tb). For this purpose we employ polarized Raman scattering in the 10–300 K temperature range. The low-temperature results show phonon softening in all investigated compounds. For decreasing R3+ radius, i.e. an increasing orthorhombic distortion and magnetic frustration, we observe in both systems a weakening of the spin-phonon coupling. For known sublattice magnetization within the MnO2-plane, quantitative results for the spin-phonon coupling constant are derived for both cases within a molecular field approximation. Our results show, that the spin-phonon coupling strength in the magnetically ordered phases of the various investigated manganites does not correlate with the magnetization pattern. Instead, the pure RMnO3 compounds and the substituted Eu1- x Y x MnO3 fit excellently within a common scheme, in which the weakening of the spin-phonon coupling reflects the degree of tilting of the MnO6 octahedra due to the orthorhombic distortion of the crystal lattice.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号