首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Critical Assessment of the Specific Role of Microwave Irradiation in the Synthesis of ZnO Micro‐ and Nanostructured Materials
Authors:Dr Mostafa Baghbanzadeh  Dr Sre?o D ?kapin  Dr Zorica Crnjak Orel  Prof?Dr C Oliver Kappe
Institution:1. Christian Doppler Laboratory for Microwave, Chemistry (CDLMC) and Institute of Chemistry, Karl‐Franzens‐University Graz, Heinrichstrasse 28, 8010 Graz (Austria), Fax: (+43)?316‐380‐9840;2. Advanced Materials Department, Jo?ef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia);3. National Institute of Chemistry, Hajdrihova 19, and Center of Excellence for Polymer Materials and Technologies, Tehnolo?ki Park 24, 1000, Ljubljana (Slovenia), Fax: (+386)?4760300
Abstract:A rapid, microwave‐assisted hydrothermal method has been developed to access ultrafine ZnO hexagonal microrods of about 3–4 μm in length and 200–300 nm in width by using a 1:5 zinc nitrate/urea precursor system. The size and morphology of these ZnO materials can be influenced by subtle changes in precursor concentration, solvent system, and reaction temperature. Optimized conditions involve the use of a 1:3 water/ethylene glycol solvent system and 10 min microwave heating at 150 °C in a dedicated single‐mode microwave reactor with internal temperature control. Carefully executed control experiments ensuring identical heating and cooling profiles, stirring rates, and reactor geometries have demonstrated that for these preparations of ZnO microrods no differences between conventional and microwave dielectric heating are observed. The resulting ZnO microrods exhibited the same crystal phase, primary crystallite size, shape, and size distribution regardless of the heating mode. Similar results were obtained for the ultrafast preparation of ZnO nanoparticles with diameters of approximately 20 nm, synthesized by means of a nonaqueous sol–gel process at 200 °C from a Zn(acac)2 (acac=acetylacetonate) precursor in benzyl alcohol. The specific role of microwave irradiation in enhancing these nanomaterial syntheses can thus be attributed to a purely thermal effect as a result of higher reaction temperatures, more rapid heating, and a better control of process parameters.
Keywords:hydrothermal synthesis  microrods  microwave chemistry  nanoparticles  zinc oxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号