首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-assembled 3D architectures of LuBO3:Eu(3+): phase-selective synthesis, growth mechanism, and tunable luminescent properties
Authors:Yang Jun  Li Chunxia  Zhang Xiaoming  Quan Zewei  Zhang Cuimiao  Li Huaiyong  Lin Jun
Institution:State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
Abstract:Rhombohedral-calcite and hexagonal-vaterite types of LuBO(3):Eu(3+) microparticles with various complex self-assembled 3D architectures have been prepared selectively by an efficient surfactant- and template-free hydrothermal process for the first time. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, and cathodoluminescence spectra as well as kinetic decays were used to characterize the samples. The pH, temperature, concentration, solvent, and reaction time have a crucial influence on the phase formation, shape evolution, and microstructure. The reaction mechanism is considered as a dissolution/precipitation process; it is proposed that the self-assembly evolution occurs by homocentric layer-by-layer growth. Under UV excitation and low-voltage electron beam excitation, calcite-type LuBO(3):Eu(3+) particles show a strong orange emission corresponding to the (5)D(0)-->(7)F(1) transition of Eu(3+) whereas vaterite-type LuBO(3):Eu(3+) particles exhibit a strong red emission with much higher R/O values (that is, chromatically redder fluorescence than that of crystals grown from a direct solid-state reaction). The tunable luminescent properties have potential applications in fluorescent lamps and field emission displays.
Keywords:europium  hydrothermal synthesis  luminescence  lutetium orthoborates  self‐assembly
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号