首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase
Authors:Olsson Mats H M  Siegbahn Per E M  Warshel Arieh
Institution:Chemistry Department, University of Southern California, Los Angeles, California 90089-1062, USA. molsson@usc.edu
Abstract:Elucidating the role of nuclear quantum mechanical (NQM) effects in enzyme catalysis is a topic of significant current interest. Despite the great experimental progress in this field it is important to have theoretical approaches capable of evaluating and analyzing nuclear quantum mechanical contributions to catalysis. In this study, we use the catalytic reaction of lipoxygenase, which is characterized by an extremely large kinetic isotope effect, as a challenging test case for our simulation approach. This is done by applying the quantum classical path (QCP) method with an empirical valence bond potential energy surface. Our computational strategy evaluates the relevant NQM corrections and reproduces the large observed kinetic isotope effect and the temperature dependence of the H atom transfer reaction while being less successful with the D atom transfer reaction. However, the main point of our study is not so much to explore the temperature dependence of the isotope effect but rather to develop and validate an approach for calculations of nuclear quantum mechanical contributions to activation free energies. Here, we find that the deviation between the calculated and observed activation free energies is small for both H and D at all investigated temperatures. The present study also explores the nature of the reorganization energy in the enzyme and solution reactions. It is found that the outer-sphere reorganization energy is extremely small. This reflects the fact that the considered reaction involves a very small charge transfer. The implication of this finding is discussed in the framework of the qualitative vibronic model. The main point of the present study is, however, that the rigorous QCP approach provides a reliable computational tool for evaluating NQM contributions to catalysis even when the given reaction includes large tunneling contributions. Interestingly, our results indicate that the NQM effects in the lipoxygenase reaction are similar in the enzyme and in the reference solution reactions, and thus do not contribute to catalysis. We also reached similar conclusions in studies of other enzymes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号