首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aggregation of FeCl2 clusters in supercritical water investigated by molecular dynamics simulations
Authors:Lümmen Norbert  Kvamme Bjørn
Institution:Department of Physics and Technology, University in Bergen, Allégaten 55, Bergen, Norway. norbert@ift.uib.no
Abstract:We have carried out molecular dynamics (MD) simulations of the aggregation of FeCl 2 clusters in supercritical water. The particle formation in systems of 2048 water molecules (rigid SPC/E-model) and 120 Fe (2+) ions and 240 Cl (-) ions has been investigated for 250 ps at five different state points at temperatures from 798 to 873 K and system densities from 0.18 g/cm (3) to 0.13 g/cm (3). We describe the particle growth by means of properties of the largest cluster in a system as well as cluster size averaged and time averaged observables. From preexisting or immediately formed units of Fe (2+)-Cl (-), Fe (2+)-Cl (-) 2, Fe (2+)-Cl (-) 3 etc., the further growth of clusters is dominated by aggregation of such small building blocks. Clusters up to 10 ions in size with large charge imbalances are found during the growth process while a balanced positive to negative charge ratio is found on the average with time and cluster size development. Water molecules are found within the FeCl 2 clusters during the whole time interval covered by the simulations, which is in agreement with the existence of crystal water in FeCl 2 crystals grown from aqueous solutions. The radial distribution functions obtained from the simulation data are in good agreement with experimental results of slightly distorted FeCl 2.4H 2O crystals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号