首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ILES for mechanism of ramp-type MVG reducing shock induced flow separation
Authors:Yong Yang  YongHua Yan  ChaoQun Liu
Abstract:A high order implicit large eddy simulation (ILES) is carried out to study the mechanism of shock induced flow separation reduction under ramp-type MVG control. The mechanism was originally considered as that MVG can generate streamwise vortices which strongly mix boundary layer and the boundary layer becomes more capable to resist strong adverse pressure gradient caused by shock and to keep the boundary layer attached. However, according to our ILES, a chain of ring-like vortices is generated behind the ramp-type MVG and goes further to interact with the shock. When the ring-like vortices pass through the shock, the shock wave is weakened and altered while the vortex structures are quite stable. The instantaneous simulation shows that the spanwise ring-like vortex, not the streamwise vortex, plays a key role to weaken the shock and reduce the shock-induced separation. Detailed investigation on ring-like vortices and shock interaction will be given in this paper.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号